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We study the flow of two immiscible fluids of different viscosities and equal density 
through a pipe under a pressure gradient. This problem has a continuum of solutions 
corresponding to arbitrarily prescribed interface shapes. The question therefore arises 
as to which of these solutions are stable and thus observable. Experiments have shown 
a tendency for the thinner fluid to encapsulate the thicker one. This has been 
‘explained’ by the viscous-dissipation principle, which postulates that  the amount 
of viscous dissipation is minimized for a given flow rate. For a circular pipe, this 
predicts a concentric configuration with the more viscous fluid located a t  the core. 
A linear stability analysis, which is carried out numerically, shows that while this 
configuration is stable when the more viscous fluid occupies most of the pipe, it is 
not stable when there is more of the thin fluid. Therefore the dissipation principle 
does not always hold, and the volume ratio is a crucial factor. 

1, Introduction 
The flow we consider is Hagen-Poiseuille flow in a cylindrical pipe of infinite length 

in which there are two fluids. The fluids are immiscible and have the same density 
but different viscosities. The flow is steady, purely axial and driven by a prescribed 
pressure gradient. 

The equations governing the flow are the steady Navier-Stokes equations with the 
velocity and the pressure gradient in the axial direction, and incompressibility. The 
boundary conditions are: no slip at the pipe wall, and, at the unknown interface of 
the two fluids, the normal and shear stresses and the velocity are to be continuous. 
We specify the ratio of the cross-sectional area occupied by each fluid and study the 
problem of selection of the interface shapes using linear stability theory. 

Theoretically, it is known that, if there is no surface tension, every interface position 
is allowed by the equations. If there is surface tension, then the interface must be 
circles or circular arcs terminating a t  the pipe wall. The number of possible steady 
solutions is still infinite. For example, if fluid 1 occupies of the cross-sectional area 
and fluid 2 occupies of the area, then 2 possible arrangements are shown in figure 1. 
Such non-uniqueness appears in the theory of steady two-fluid flows for many kinds 
of flow regimes (Joseph, Nguyen & Beavers 1984). On the other hand, experiments 
with the pipe flow indicate that whatever the initial configuration, the low-viscosity 
liquid will eventually encapsulate the thicker fluid. The encapsulation property has 
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FIGURE 1 

been observed for both high- and low-Reynolds-number flows, ranging from oil and 
water to molten polymers (Charles & Redberger 1962; Everage 1973; Hasson & Nir 
1970; Minagawa & White 1975; Southern & Ballman 1973; White & Lee 1975; 
Williams 1975; Yu & Sparrow 1969). 

It is necessary to reconcile the existence of a continuum of solutions with the 
experimentally observed unique configuration. Up to now, explanations have been 
based on the ‘viscous-dissipation principle’, which says that the flow chooses an 
interface which in some sense minimizes viscous dissipation for a given flow rate, or, 
equivalently, maximizes the volume flux for a given pressure gradient (Everage 1973 ; 
Southern & Ballman 1973; Williams 1975; MacLean 1973). 

This requires the minimization of 
r r 

where G is the given pressure gradient, pi and 52, are the viscosity and region 
respectively of fluid i (i = 1 ,2 ) ,  and u is the axial velocity. The union of 52, and 52, 
is the cross-section Q of the pipe. The areas of Q, and 52, are prescribed. The integral 
represents minus half of the dissipation. The axial velocity u must vanish on the 
boundary of the pipe and be continuous across the interface. The continuity of shear 
stress is satisfied automatically as a natural boundary condition. We note that the 
integral must be minimized not only with respect to u, but also wit’h respect to the 
possible choices of 0, and 52,. 

For a pipe with general cross-section, the viscous dissipation principle does not have 
a solution with a smooth interface (see Lurie, Cherkaev & Fedorov 1982 and 
references therein). Rather, minimizing sequences lead to  patterns involving layered 
structures with thinner and thinner alternating layers of the two fluids. I n  the limit, 
this leads to a region that is not filled by either fluid, but by an anisotropic mixture. 
It can be shown (Tartar 1975; Raitum 1978, 1979) that  a modified formulation of 
the problem allowing such anisotropic mixtures does lead to the existence of 
minimizers. In reality, surface tension would not permit the formation of layered 
composites, and emulsions might form instead (if the viscous-dissipation principle is 
correct). 

For a circular pipe, a classical solution does exist. Let 52 be a circular disk. 
Following an idea of Everage (1973), let u, be the solution of Au, = -G, such that 
i t  vanishes on the boundary of 52. We put u = u,/,u+ii. Then the integral above is 
equal to 
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FIGURE 2 

where R,, say, is the region occupied by the more viscous fluid. The first of the 
expressions is zero. The term 

is maximal if and only if (Vu,), takes its smallest values in Q,; i.e. if Q, is a disk in 
the centre of the pipe. In  this case each boundary of Q, is a line on which uo is constant. 
If we then choose U = 0 in the out,er region, and U = constant in the inner region such 
that u is continuous, then the continuity of velocity and shear stress across the 
interface are satisfied. The expression 

r r 

becomes zero, which is its minimal value. Hence the minimizer of viscous dissipation 
is the concentric configuration with the more viscous fluid a t  the core. 

This result appears to agree with experiments. Our question is: how valid is the 
viscous-dissipation principle 1 One way to find out is to do a stability analysis for the 
circular pipe to see if the configuration preferred by the viscous-dissipation principle 
turns out to be stable. 

2. Numerical calculations 
Following Hickox (1971), we consider a linear stability analysis for the circular pipe 

where the basic flow is the Poiseuille flow with a concentric interface (figure 2 ) .  Fluid 
1 is a t  the core, fluid 2 encapsulates fluid 1 .  We superimpose an infinitesimal 
disturbance (u, v, w, p )  exp i( -ac t  + az + no). We use a Chebyschev-polynomial 
expansion in the radial direction (Orszag & Kells 1980). The problem is then an 
eigenvalue problem for c ,  given all the other parameters. If the sign of the imaginary 
part of c is positive, tthen the flow is unstable t o  small disturbances. 

The particular case of the long-wave limit, axReynolds number-to, and the 
thinner fluid at  the core, was studied by Hickox (1971) and was shown to be unstable. 
This supports the viscous-dissipation principle, but Hickox did not look a t  the case 
where the thicker fluid is a t  the core to see if that would be stable. 
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Stable 
FIGURE 3 

/ \ 

3. Results 
The eigenvalue that determines instability is an interfacial one in the sense that 

it is neutrally stable when the two viscosities are equal. This situation is not identical 
with the one-fluid flow because of the extra conditions a t  the interface. Yih (1967) 
found similar results when he looked a t  plane Couette flow with a flat interface with 
the long-wave approximation. 

Our range of parameters is the following: viscosity ratio ,ul/,u2 from 0.2 to 8, 
dimensionless wavelength of axial disturbance aR, from 0.1 to 10, reference Reynolds 
number R, Wlv ,  from 0 to 1000, where W is the ‘velocity scale’ defined by GRt/4 p,, 
normalized to 1 in the following, and v, is the kinematic viscosity of the outer fluid. 
The density is taken to be 1 .  

First, we found that the configuration with the thin fluid a t  the core is unstable. 
This extends Hickox’s long-wave results and agrees with the viscous-dissipation 
principle. Secondly, when the thick fluid is a t  the core, stability depends on the radius 
ratio RJR,. This shows that the viscous-dissipation principle is not always true. The 
dependence ofthe stability on the radius ratio is qualitatively similar to Yih’s results, 
where stability depends on the depth ratio of the two fluids. Figure 3 shows an 
example of what we found a t  Reynolds number 100, aR, = 1 .  

Figure 4 is a graph of the imaginary part of c versus viscosity ratio for Re = 100, 
aR, = 1 ,  RJR, = 0.7. Numbers next to the curves denote azimuthal mode numbers. 
The dark points on the curves show our computed values and the dashed lines are 
interpolants. At any radius ratio, high azimuthal modes are unstable, but the 
magnitude of Im (c) decreases asymptotically with the mode number. Here mode 5 
becomes positive in the inset. For R J R ,  0.7, the curves sink below the Im (c) = 0 
axis for p1/,u2 > 1 ,  while higher modes are weakly unstable. For R J R ,  5 0.7, all the 
modes are unstable, yielding the results in figure 3. Figure 5 is a graph of Im ( c )  versus 
viscosity ratio a t  Re = 100, R J R ,  = 0.8, aR, = 10. When aR, = 1 the region of 
stability is ,ul/,u2 > 1 ,  but for aR, = 10 the modes are mostly unstable. The flow is 
unstable to short waves in z and 0 when surface tension is 0. This agrees with the 
analysis of Hooper & Boyd (1983), who consider the linear stability of an unbounded 
Couette flow. The two fluids occupy each half-plane. Their analysis is relevant locally 
a t  any interface with a viscosity jump and predicts instability for short-wave 
disturbances. This is in contrast with one-fluid flows, where viscosity acts to dampen 
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short waves. Hooper BE Boyd show that surface tension is effective in dampening short 
waves. 

Thirdly, when the viscosity ratio is large, the response changes only gradually. 
Figure 6 is a graph a t  R J R Z  = 0.9, Re = 100, aR,  = 1. The imaginary part of c is 
not sensitive to changes of the ratio ,ul/,uz; for example from ,ul/pz = G7. This 
behaviour has been mentioned in some experiments (Everage 1973). 



Pipe $ow of two immiscible liquids with different viscosities 

0.04 

0.02 

0.00 

315 

Viscosity ratio 

FIGURE 7. Imaginary part of c versus viscosity ratio Re = 1000, 
aR, = 1, RJR, = 0.8. 

Fourthly, as the Reynolds number increases, stability is lost. Figure 7 is a graph 
of Re = 1000, RJR, = 0.8, aR, = 1 .  When Re = 100, the region of stability is 
y,/,u, > 1 ,  but when Re = 1000 the region of stability is reduced to ,ul/,u2 2 1.8. 
Detailed numerical results and calculations are described in Joseph, Renardy & 
Renardy (1983). 

4. Conclusion 
Our results show that the restricted version of the viscous-dissipation principle 

described in this paper is not always true. However, figure 3 indicates that there is 
some truth to the idea that the thin fluid tends to lubricate the wall. The flow with 
the thin fluid at the centre is very unstable to long waves. The flow with small 
amounts of thin fluid outside is stable to long waves. The flow with large amounts 
of thin fluid outside is weakly unstable to long waves. Flows with thin fluid outside 
are weakly unstable (growth rates tend to zero) to short waves and are probably 
stabilized by surface tension. 

The basic feature that the less-viscous fluid tends to lubricate the wall is also found 
in plane Couette and Poiseuille flow (Yih 1967) and in the flow between rotating 
cylinders (Renardy, Y. & Joseph 1983). In the latter case, a lubrication layer on either 
cylinder turns out to be stable, and the stabilizing effect of viscosity stratification 
can even overcome a destabilizing density difference. 

A natural question arises as to which flows would replace the concentric flow when 
it becomes unstable. If surface tension is important, then short waves are stabilized, 
and the dynamics of the problem should be governed by long and order-1 waves. If 
periodic boundary conditions are imposed in the streamwise direction, then there are 
a finite number of such modes, and techniques of bifurcation theory are applicable. 
The simplest patterns that can arise are travelling interfacial waves arising from a 
Hopf bifurcation. This has been conjectured by Yih (1967), and a rigorous proof is 
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given in a forthcoming paper (Renardy, M. & Joseph 1984). If surface tension is 
absent, then there is an infinite number of unstable modes with arbitrarily short 
wavelengths. The usual techniques of bifurcation theory do not apply to this type of 
situation. We believe that this situation is a possible mechanism for the formation of 
emulsions. 
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